skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Haiyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We have performed numerical calculations of a binary interacting with a gas disk, using 11 different numerical methods and a standard binary−disk setup. The goal of this study is to determine whether all codes agree on a numerically converged solution and to determine the necessary resolution for convergence and the number of binary orbits that must be computed to reach an agreed-upon relaxed state of the binary−disk system. We find that all codes can agree on a converged solution (depending on the diagnostic being measured). The zone spacing required for most codes to reach a converged measurement of the torques applied to the binary by the disk is roughly 1% of the binary separation in the vicinity of the binary components. For our disk model to reach a relaxed state, codes must be run for at least 200 binary orbits, corresponding to about a viscous time for our parameters, 0.2(a2ΩB/ν) binary orbits, whereνis the kinematic viscosity. The largest discrepancies between codes resulted from the dimensionality of the setup (3D vs. 2D disks). We find good agreement in the total torque on the binary between codes, although the partition of this torque between the gravitational torque, orbital accretion torque, and spin accretion torque depends sensitively on the sink prescriptions employed. In agreement with previous studies, we find a modest difference in torques and accretion variability between 2D and 3D disk models. We find cavity precession rates to be appreciably faster in 3D than in 2D. 
    more » « less
  2. null (Ed.)
  3. Abstract PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R$$_\textrm{Earth}$$ Earth ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026